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Characteristic relations of type-I intermittency in the presence of noise
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~Received 11 February 2000!

Near the point of tangent bifurcation, the scaling properties of the laminar length of type-I intermittency are
investigated in the presence of noise. Based on analytic and numerical studies, we show that the scaling
relation of the laminar length is dramatically deformed from 1/Ae for e.0 to exp$(1/D)ueu3/2% for e,0 ase
passes the bifurcation point (e50). The results explain why two coupled Ro¨ssler oscillators exhibit deforma-
tion of the scaling relation of the synchronous length in the nearly synchronous regime.

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

Intermittency is the occurrence of a randomly alternat
signal between long regular~laminar! phases and relatively
short irregular bursts@1#. It is considered to be important a
one of the routes to chaos in nonlinear dynamics. There h
been extensive studies to manifest the route in terms of
periment as well as theory@1–8#. The scaling properties o
the laminar length were studied for the first time by Manne
ille and Pomeau in the Lorenz model@2#. Based on the
renormalization-group equation~RGE!, some other authors
also investigated them@5–7#. Recently, it was reported tha
the reinjection mechanism is another important factor t
dictates the scaling relation of the laminar length@7,8#.

Because noise is not avoidable in real environments, c
sideration of it is important in studying the realistic prope
ties of a nonlinear dynamical system@9#. The characteristics
of a nonlinear dynamical system in the presence of no
have been investigated by several authors based on
Fokker-Planck equation~FPE! @3,4,7# and RGE@5,6#, since
the studies of Brownian motion initiated the stochastic m
eling of the natural phenomena@9#.

The system without noise converges to fixed points wh
bifurcation occurs but it does not exhibit infinite lamin
phase under the succeeding random perturbation. So the
the possibility that the scaling properties show quite differ
features from those of the conventional ones. In this resp
the recent investigation@10# that observed that the scalin
properties of the laminar length are deformed in the nea
synchronous regime of two coupled Ro¨ssler oscillators@11#
was brought to our attention.

In this paper, we investigate type-I intermittency in t
presence of noise before and after the tangent bifurcat
This issue has been extensively investigated in past sev
decades@3–7#. However, we remark that the analytic scalin
rule is not derived and it is not verified in continuous-tim
chaotic systems, yet. We present some new results in
nection with these facts. First, we derive the analytic sca
rule of the laminar length in the closed channel~i.e., e,0),
which is exactly verified by using numerical simulation
Moreover, as an example that substantiates the anoma
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scaling rule in a continuous-time chaotic system, we cons
the coupled chaotic oscillators near the phase synchron
tion regime. We also show that the mysterious sequenc
2p phase jumps@10# in two coupled chaotic oscillators
obeys the very scaling rule of type-I intermittency in th
presence of noise.

II. ANALYTIC RESULTS

The local Poincare´ map of type-I intermittency in the
presence of noise is described as the following differe
equation@1,2,4–8#:

xn115xn1axn
21e1A2Djn , ~1!

where a is the positive arbitrary constant,e the channel
width between diagonal and map, andD the dispersion of
Gaussian noisejn . In the long laminar region, we can ap
proximate the difference equation to the stochastic differ
tial equation as follows@4#:

ẋ52V8~x!1A2Dj~ t !, ~2!

where the overdot and prime denote the differentiation w
respect tot and x, respectively,j(t) is the Gaussian white
noise such that̂j(t8)j(t)&5d(t82t) and^j(t)&50 @9#, and
V(x) is the potential given byV(x)52 1

3 ax32ex1c, where
c is the integration constant. The above equation can be c
sidered as the equation of motion of the point particle un
the potentialV(x) and random perturbationj(t). The rela-
tion between return map and potential is given in Fig. 1.
this figure, the stable and the unstable fixed points co
spond to the extremal points of the potential.

From the above stochastic differential equation, we obt
the backward FPE@4,9# by following the well-established
procedure@9# as follows:

]G~x,t !

]t
52V8~x!

]G~x,t !

]x
1D

]2G~x,t !

]x2
, ~3!

whereG(x,t) is the probability density of particle at$x,t%.
We obtain a mean first-passage time~MFPT! equation after
integrating the above FPE with respect to time as follo
@4,9#:
6304 ©2000 The American Physical Society
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2152V8~x!
dT

dx
1D

d2T

dx2
, ~4!

whereT(x) is the mean escaping time defined by

T~x!5^t&52E
0

`

t
]G~x,t !

]t
dt

under the boundary conditions thatG(x,0)51 and
lim

t→`
G(x,t)50. The MFPT functionT(x) is the average

transition time from the reinjection to the escaping point
the particle under the potentialV(x) and random perturba
tion. The general solution of Eq.~3! can be derived as fol
lows:

T~x!5cE
xl

x

dx8expH 1

D
V~x8!J

2
1

DE
xl

x

dx8E
xl

x8
dx9 expH 1

D
@V~x8!2V~x9!#J ,

~5!

wherec is the integration constant,xl is the lower bound of
the laminar phase, andx is the destination point of the tran
sition. We can easily verify that Eq.~5! is the general solu-
tion for the MFPT equation by inserting Eq.~5! into Eq.~4!.

If noise is small enough such thatD!1, the first term in
the above equation is suppressed by the factor of 1/D and the
second term becomes dominant. The second term is no
tegrable analytically. Then we can expand the potential at
extremal point x6 approximately ~see Fig. 1! such that
V(x)'V(x6)1@V9(x6)/2#(x2x6)21O„(x2x6)3

….
In that case, the MFPT functionT(x) can be approxi-

mated as follows:

FIG. 1. The relation between fixed and extremal points foe
,0. s andu are the stable and unstable fixed points,xl andxu are
the lower and upper bounds of the laminar phase, respectively,
x2 andx1 are the extremal points of the potential.
f

in-
e

T~x!'2
1

D
expH 1

D
@V~x1!2V~x2!#J

3E
xl

x

dx8E
xl

x8
dx9 expH 1

2D
@V9~x1!~x82x1!2

2V9~x2!~x92x2!2#J . ~6!

The extremal points are given byx656A2e/a in Eq. ~2!.
In the far outside of the laminar phase~i.e., at the limitx
→` and xl!x2), we can perform the integration of th
quadratic exponent@9# and then obtain the following ap
proximated solution of the MFPT equation:

uTu5
p

Aaueu
expH 4

3DAa
ueu3/2J for e,0. ~7!

The above solution is consistent with the formal one that w
derived in the previous investigation by the FPE and R
analysis@3–5,7# such that̂ l &;e21/2f (s2/e3/2). We observe
that there has been no explicit derivation in analytic fo
like Eq. ~7!. The analytic solution is important in analyzin
various intermittent phenomena quantitatively. In particu
we are interested in the mysterious deformation of the typ
scaling near phase-synchronization regime@10# and eventu-
ally show that it enables the theoretical understanding
those phenomena.

After taking the logarithm on Eq.~7!, we obtain the equa-
tion such that lnT;21/2 lnueu1(1/D)ueu3/2. Our main inter-
ests are in the far region (ueu@0) from the bifurcation point
because the transition from the intermittency to stable o
occurs here. In this region the scaling is dominated by
second term such that lnT;(1/D)ueu3/2 ~note that this expo-
nential saturation rapidly forms fromueu>1.031023 be-
cause the noise is small enough such that 1/D50.531016 in
our simulation@see Fig. 3~b!#!.

The reinjection probabilityP(xin) was reported to be an
other important factor that affects the scaling relations of
laminar length@8#. It was generally considered to obtain a
erage laminar length@7,8#. But in this investigation we only
consider the fixed reinjection probabilityP(xin)5d(xin
2D) to study the intrinsic scaling property of the syste
~note in all of our simulation we set the reinjection pointD
5xl).

The approximation procedure used in Eq.~6! is not appli-
cable fore.0 and a transient region because the equatio
a solution fore,0 where the potential has extremal poin
~see Fig. 1!. At the far outside from the bifurcation poin
~i.e., e@D.0), we take the limitD→0 in Eq. ~4! and ob-
tain the conventional scaling relation of type-I intermitten
T;1/Ae @2,4#. For intermediate rangee;D, we present the
numerical results of the scaling relation of the laminar len
in Figs. 3~c! and 3~d!.

In Eq. ~7!, if we takeD→0, the MFPT functionT→`.
So the particle trapped in the well does not escape from
the random perturbation is turned off.
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III. NUMERICAL RESULTS

The scaling relation of the laminar length can be verifi
in numerical solutions and simulations. In Fig. 2, the nume
cally solved MFPT functionT(x) shows the typical kink
shape@14#, thus we can know thatT(x) is the good physica
quantity reflecting the transition characteristics of interm
tency from the laminar phase to chaotic burst. In that ca
we can define a topological index of the transition such t
Q5uT(`)2T(2`)u @14#. The negative signature in Fig.
stems from the backwarding property of FPE of Eq.~3! and
the absolute value of the MFPT functionT(x) is the laminar
length @4,9#.

In the following presentation of the numerical results, w
let xl521.0 andxu51.0 and the average laminar length
^ l &[uT(xu)2T(xl)u @as given in Fig. 2~b!, T(x) rapidly con-
verges to the constants outside the center, so that we ca
that ^ l & is a kind of topological index as defined above#. To
confirm the scaling relation of Eq.~7!, we not only perform
a direct simulation with Eq.~1! but also solve the second
order MFPT equation@Eq. ~4!# numerically. In Fig. 3, the
circle points and solid lines are simulation data from Eq.~1!
and solution data from Eq.~4!, respectively. The dashe
lines in Figs. 3~b! and 3~d! are 3/2 scaling expected from Eq
~7! and21/2 scaling fore.0, respectively. When we simu
late Eq.~1!, the approximated Gaussian noise is used~see the
caption of Fig. 3 for details!. The solution data agree we
with the simulation data. We note here that there are so
shifts from the solution line when the uniform noise is a
plied, but the scaling behaviors are invariant in both cas

Figure 3~a! shows the scaling relation fore,0. The figure
ln^l& as a function ofueu3/2 shows a straight line approxi
mately to confirm^ l &;exp$(1/D)ueu3/2%. The exponent 3/2
appears more clearly when we obtain ln(ln^l&) as a function
of ln(e) as given in Fig. 3~b!. Thus we can verify the slope i
eventually saturated to 3/2. This is the very scaling beha
obtained in Eq.~7! analytically. The analytic solution is als
given in Fig. 3~b! as the dot-dashed line that is the plotting
Eq. ~7!. In figures, though we present the simulation d
within the limit of numerical calculation of the map@Eq. ~1!#
the data well follows the deformation of the scaling beha
ior.

In Fig. 3~c!, the conventional scalinĝl &;1/Ae holds for
relatively wide channel region (e@D.0) so that the slope
21/2 saturation can be obtained in Fig. 3~d!. As the channel
width e becomes close to zero, the straight line begins

FIG. 2. The numerical solutions of the MFPT equation.~a! The
first differentiation of the MFPT function and~b! the MFPT func-
tion whena50.1 andD52.031026. The dotted, dashed, and lon
dashed lines are fore521.031025, e522.031025, and e
523.031025, respectively.
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bend @Fig. 3~c!# and aftere passes zero point, the straig
line reappears@Fig. 3~a!#.

IV. ANOMALOUS SCALING RULE IN COUPLED
CHAOTIC OSCILLATORS

We now apply this analysis to two-coupled Ro¨ssler oscil-
lators that are a good laboratory for the studying of typ
intermittency with random perturbation@10–12#. It is impor-
tant to discuss the correspondence between two cou
Rössler oscillators and type-I intermittency in the presen
of noise to explore the origin of nearly synchronous pheno
ena. The two coupled Ro¨ssler oscillators are given as follow
@10–12#:

ẋ1,252v1,2y1,22z1,21e~x2,12x1,2!,

ẏ1,25v1,2x1,210.15y1,2, ~8!

ż1,250.21z1.2~x1,2210.0!,

wherev1,251.060.015. The phase difference between t
two oscillators can be rewritten as follows:

d

dt
~u!5F~u,e!1G~f1 ,f2!, ~9!

where,

F~u,e!5v12v22
e

2 FA2

A1
1

A1

A2
Gsinu,

FIG. 3. The laminar scaling before and after the tangent bif
cation.~a! and~b! are fore,0. ~c! and~d! are fore.0. The circles
are simulation data from Eq.~1! and the solid lines are solution dat
from Eq.~4!. The dashed lines in~b! and~d! show the slope 3/2 and
21/2 saturation, respectively, and the dot-dashed line in~b! is an
analytic solution curve@Eq. ~7!# ~the maximum and dispersion o
the Gaussian noise areuju52.031023 andD52.031026, respec-
tively!.
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G~f1 ,f2!50.15~sinf1 cosf12sinf2 cosf2!

1S z1

A1
sinf12

z2

A2
sinf2D ,

where u5f12f2 , A1,25Ax1,2
2 1y1,2

2 , and f1,2

5arctan(y1,2/x1,2). In the above equations, we neglect t
fast-fluctuation term that depends one, in F(u,e) as dis-
cussed in Ref.@10#.

As already discussed in Ref.@10#, the potential of this
systemV(u)52*duF(u,e) shows the saddle-node bifurca
tion ate5e t(50.0276). If we identifyG(f1 ,f2) as the ran-
dom perturbation term of Eq.~1!, we can argue the scalin
relation of the length of synchronization in nearly synch
nous regime of these two-coupled oscillators are effectiv
similar to that of type-I intermittency with noise@Eq. ~2!#
@note: the dispersion ofG(f1 ,f2) hardly depends one for
e t,e,ec#. Thus, we observe that the scaling of the lamin
length is separated into two regions in the center ofe5e t .
So it has^ l &;exp$uet2eu3/2% for e.e t and ^ l &5ue t2eu21/2

for e,e t , like the previously presented results@note: based
on numerical studies, Ref.@10# proposed the scalinĝl &
;exp$2uec2eu1/2% for e.e t(ec50.0286)#.

As in the above analysis, the persistency of the interm
tency is caused by the random perturbationj(t) in the
closed-channel region. Thus it can be argued that the n
trivial 2p-phase jumps observed in Ref.@10# originate from
the random perturbation termG(f1 ,f2), neglected in the
discussion of Ref.@10#, rather than from the termA2 /A1
1A1 /A2. We perform the numerical simulation for the sca
ing of the laminar length in both regions (e,e t ande.e t),
and the results are presented in Fig. 4. As we expected
figures well agree with the previous theoretical analysis
the scaling relation.

V. SUMMARY AND DISCUSSIONS

In conclusion, the anomalous scaling relation of typ
intermittency is presented in the region after the tangent
furcation. We observe that the conventional scaling relat
^ l &;1/Ae of type-I intermittency holds only in relatively
wide channel (e@D.0) and it begins to deform ase ap-
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