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Characteristic relations of type-I intermittency in the presence of noise
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Near the point of tangent bifurcation, the scaling properties of the laminar length of type-I intermittency are
investigated in the presence of noise. Based on analytic and numerical studies, we show that the scaling
relation of the laminar length is dramatically deformed fromy/e.for €>0 to exd(1/D)|€|*? for e<0 ase
passes the bifurcation poiné£0). The results explain why two coupled §ter oscillators exhibit deforma-
tion of the scaling relation of the synchronous length in the nearly synchronous regime.

PACS numbdps): 05.45-a, 05.40-a

I. INTRODUCTION scaling rule in a continuous-time chaotic system, we consider
the coupled chaotic oscillators near the phase synchroniza-
Intermittency is the occurrence of a randomly alternatingtion regime. We also show that the mysterious sequence of
signal between long reguldtaminay phases and relatively 27 phase jumpg10] in two coupled chaotic oscillators
short irregular burstgl]. It is considered to be important as obeys the very scaling rule of type-I intermittency in the
one of the routes to chaos in nonlinear dynamics. There haveresence of noise.
been extensive studies to manifest the route in terms of ex-

periment as well as theofl—8]. The scaling properties of Il. ANALYTIC RESULTS
the laminar length were studied for the first time by Mannev- o, _ . _
ille and Pomeau in the Lorenz modg2]. Based on the The local Poincaremap of type-I intermittency in the

renorma“zation_group equatidrRGE)’ some other authors pPresence of noise is described as the fO”OWing difference
also investigated therf6—7]. Recently, it was reported that €duation[1,2,4-8:
the reinjection mechanism is another important factor that
dictates the scaling relation of the laminar lenftt8]. Xn+1=Xn+axXa+ e+ 2D&,, (1)
Because noise is not avoidable in real environments, con-
sideration of it is important in studying the realistic proper-where a is the positive arbitrary constang the channel
ties of a nonlinear dynamical systd®)]. The characteristics width between diagonal and map, abdthe dispersion of
of a nonlinear dynamical system in the presence of nois€&aussian nois&,. In the long laminar region, we can ap-
have been investigated by several authors based on thoximate the difference equation to the stochastic differen-
Fokker-Planck equatiofFPE [3,4,7] and RGE[5,6], since tial equation as follow$4]:
the studies of Brownian motion initiated the stochastic mod-
eling of the natural phenomen8]. x=—V'(X)+\2D&(1), )
The system without noise converges to fixed points when
bifurcation occurs but it does not exhibit infinite laminar where the overdot and prime denote the differentiation with
phase under the succeeding random perturbation. So thereyisspect tot and x, respectively,£(t) is the Gaussian white
the possibility that the scaling properties show quite differentygise such thatg(t’) £(t)) = 8(t’ —t) and(£(t))=0 [9], and
features from those of the conventional ones. In this respecy;(x) is the potential given by/(x) = — 2ax®— ex+c, where
the recent investigatiopl0] that observed that the scaling ¢ s the integration constant. The above equation can be con-
properties of the laminar length are deformed in the nearlyigered as the equation of motion of the point particle under
synchronous regime of two coupled dter oscillator§11]  the potentialv(x) and random perturbatio#(t). The rela-
was brought to our attention. _ _ _ tion between return map and potential is given in Fig. 1. In
In this paper, we investigate type-I intermittency in thens figure, the stable and the unstable fixed points corre-
presence of noise before and after the tangent b|furcat|or§p0nd to the extremal points of the potential.
This issue has been extensively investigated in past several From the above stochastic differential equation, we obtain

decade$3-7]. However, we remark that the analytic scaling he packward FPE4,9] by following the well-established
rule is not derived and it is not verified in continuous-time procedurd 9] as follows:

chaotic systems, yet. We present some new results in con-
nection with thgse facts. F.lrst, we derive the a}nalyt|c scaling IG(x.1) IG(x.1) PG (x.1)
rule of the laminar length in the closed chanfied., e<0), =—-V'(X) +D , (3)
which is exactly verified by using numerical simulations. at X ax?
Moreover, as an example that substantiates the anomalous
where G(x,t) is the probability density of particle di,t}.
We obtain a mean first-passage tiihFPT) equation after
*Electronic address: whkye@alpha3.paichai.ac.kr integrating the above FPE with respect to time as follows
TElectronic address: chmkim@mail.paichai.ac.kr [4,9]:
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Tx)~—gexp [V(x:) —V(x-)]
X x' 1 2
X | dx' | dx'exp z=[V"(x;)(X'—x,)
X X 2D

—V"(X)(X"—X)Z]}- (6)

The extremal points are given by, = ++/—€/a in Eq. (2).

In the far outside of the laminar phagee., at the limitx
—oo and x;<<x_), we can perform the integration of the
guadratic exponenf9] and then obtain the following ap-
proximated solution of the MFPT equation:

FIG. 1. The relation between fixed and extremal points dor

<0. sandu are the stable and unstable fixed poixsandx, are 4
- . .
the lower and upper bounds of_ the laminar phas_e, respectively, and |T| _ ex |e|3’2 for e<0. @
X_ andx, are the extremal points of the potential. Vale| 3D\/5
T _d’T o . .
—1=—V'(x) T +D —, (4) The above solution is consistent with the formal one that was
X

derived in the previous investigation by the FPE and RGE
analysis[3—5,7] such that|)~ e~ Y2 (% €*?). We observe
that there has been no explicit derivation in analytic form
like Eq. (7). The analytic solution is important in analyzing
various intermittent phenomena quantitatively. In particular
= 9G(x,1) we are interested in the mysterious deformation of the type-I
T(x)=(t)= —f t dt scaling near phase-synchronization regirh@] and eventu-
0 at ally show that it enables the theoretical understanding of
those phenomena.
under the boundary conditons tha(x0)=1 and  NECSEER I 09RO PR SRS
“meG(X’t)_O' The MFPT functionT(x) is the average ests are in the far regiorjd|>0) from the bifurcation point
transition time from the reinjection to the escaping point ofpecause the transition from the intermittency to stable orbit
the particle under the potenti®(x) and random perturba- occurs here. In this region the scaling is dominated by the
tion. The general solution of E3) can be derived as fol- second term such that Tr-(1/D)| €|®? (note that this expo-
lows: nential saturation rapidly forms frome|=1.0x10"3 be-
cause the noise is small enough such thBt=10.5x 10" ® in

1 our simulation[see Fig. 80)]).
o]

whereT(x) is the mean escaping time defined by

The reinjection probability?(x;,) was reported to be an-
other important factor that affects the scaling relations of the
1 (x ) 1 laminar length8]. It was generally considered to obtain av-

—Z | dx fx dx’ exp{—[V(x’)—V(x”)] ' erage laminar lengtfi7,8]. But in this investigation we only
DJx X D consider the fixed reinjection probabilit(x;,)= &(xi,
(5) —A) to study the intrinsic scaling property of the system
(note in all of our simulation we set the reinjection point
:X|).
wherec is the integration constant, is the lower bound of The approximation procedure used in Eg).is not appli-
the laminar phase, andis the destination point of the tran- cable fore>0 and a transient region because the equation is
sition. We can easily verify that E@5) is the general solu- a solution fore<0 where the potential has extremal points
tion for the MFPT equation by inserting E() into Eq.(4).  (see Fig. 1 At the far outside from the bifurcation point

If noise is small enough such thBt<1, the first term in  (i.e., eD>0), we take the limitD—0 in Eq.(4) and ob-
the above equation is suppressed by the factor@falid the tain the conventional scaling relation of type-I intermittency
second term becomes dominant. The second term is not if-~1/\/e [2,4]. For intermediate range~D, we present the
tegrable analytically. Then we can expand the potential at thaumerical results of the scaling relation of the laminar length
extremal pointx. approximately(see Fig. 1 such that in Figs. 3c) and 3d).

V(X)=V(X2)+[V"(Xx2)/2](x— X4 )%+ O((x—x=) ). In Eq. (7), if we takeD—0, the MFPT functionT — .

In that case, the MFPT functiof(x) can be approxi- So the particle trapped in the well does not escape from it if

mated as follows: the random perturbation is turned off.

X
T(x)= cf dx’ex

X|
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FIG. 2. The numerical solutions of the MFPT equatit.The
first differentiation of the MFPT function an@) the MFPT func-
tion whena=0.1 andD = 2.0x 10~ 8. The dotted, dashed, and long . ©
dashed lines are fore=—1.0x10"° e=-2.0x10"° and € 2q0° - iy T
=—3.0x10"5, respectively.
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IIl. NUMERICAL RESULTS
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The scaling relation of the laminar length can be verified € Ine
in numerical solutions and simulations. In Fig. 2, the numeri-

cally solved MFPT functionT(x) shows the typical kink _ -
shapd 14], thus we can know thaf(x) is the good physical Ca“of‘-(a) a.”d(b) are fore<0. (c) and(d) are f.0r5>0' The C.'rdes

k . . 2 ; ., are simulation data from E@1) and the solid lines are solution data
guantity reflecting t.he transition charagterlstlcs of intermit-¢ Eq.(4). The dashed lines itb) and(d) show the slope 3/2 and
tency from .the laminar phas_e to chaotic burst_._ In that case, 1/, saturation, respectively, and the dot-dashed lingjris an
we can define a topological index of the transition such thagnalytic solution curvdEq. (7)] (the maximum and dispersion of
Q=|T() —T(—=)| [14]. The negative signature in Fig. 1 the Gaussian noise afé|=2.0x 103 andD=2.0x 10", respec-
stems from the backwarding property of FPE of E8).and tively).
the absolute value of the MFPT functidifx) is the laminar
length[4,9]. bend[Fig. 3(c)] and aftere passes zero point, the straight

In the following presentation of the numerical results, weline reappear§Fig. 3a)].

let x,= — 1.0 andx,=1.0 and the average laminar length is
(H=|T(x,) —T(x))| [as given in Fig. &), T(x) rapidly con-
verges to the constants outside the center, so that we can say
that(l) is a kind of topological index as defined ab®vEo
confirm the scaling relation of Eq7), we not only perform We now apply this analysis to two-coupled $ter oscil-
a direct simulation with Eq(1) but also solve the second- lators that are a good laboratory for the studying of type-|
order MFPT equatiodiEq. (4)] numerically. In Fig. 3, the intermittency with random perturbatiga0-12. It is impor-
circle points and solid lines are simulation data from Bg. tant to discuss the correspondence between two coupled
and solution data from Eq(4), respectively. The dashed Rossler oscillators and type-I intermittency in the presence
lines in Figs. 8b) and 3d) are 3/2 scaling expected from Eq. of noise to explore the origin of r_1ear|y synch_ronous phenom-
(7) and — 1/2 scaling fore>0, respectively. When we simu- €Na- The two coupled Rsler oscillators are given as follows
late Eq.(1), the approximated Gaussian noise is use the [10-12:
caption of Fig. 3 for details The solution data agree well .
with the simulation data. We note here that there are some X1 9= — w1 Y12~ Z1 ot €(Xp1— X1.0),
shifts from the solution line when the uniform noise is ap-
plied, but the scaling behaviors are invariant in both cases.

FIG. 3. The laminar scaling before and after the tangent bifur-

IV. ANOMALOUS SCALING RULE IN COUPLED
CHAOTIC OSCILLATORS

Figure 3a) shows the scaling relation fer<0. The figure Y127 @1,X1,51+0.15/15, ®)
In(l) as a function of| |32 shows a straight line approxi-
mately to confirm(l)~exp{(1/D)|e|*3. The exponent 3/2 2, 5= 0.2+ 71 (%1 — 10.0),

appears more clearly when we obtain Ifjhas a function
of In(e) as given in Fig. &). Thus we can verify the slope is
eventually saturated to 3/2. This is the very scaling behavio
obtained in Eq(7) analytically. The analytic solution is also
given in Fig. 3b) as the dot-dashed line that is the plotting of q
Eqg. (7). In figures, though we present the simulation data _
within the limit of numerical calculation of the mdgq. (1)] ai O =F(6.)+G($1,42), ©
the data well follows the deformation of the scaling behav-
lor. where,

In Fig. 3(c), the conventional scalin(j>~1/\/2 holds for
relatively wide channel regione&>D>0) so that the slope
— 1/2 saturation can be obtained in FigdB As the channel F(0,€)=w,— wy— €
width e becomes close to zero, the straight line begins to 2

where w; ,=1.0+0.015. The phase difference between the
{WO oscillators can be rewritten as follows:

i
Au A,

sing,
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G(¢q1,d5)=0.15sin ¢, COSh1—Sin ¢, COSh5)

N Z Z; .
A—lsm(ﬁl A—23|n b5,
where  0=d¢1— ¢y, A= VX{,tYin and @i,

=arctany, »/x; 5. In the above equations, we neglect the
fast-fluctuation term that depends en in F(6,¢) as dis-
cussed in Ref[10].

As already discussed in Ref10], the potential of this
systemV(6)=— [dOF(6,e) shows the saddle-node bifurca-
tion ate= €(=0.0276). If we identifyG( ¢4, ¢,) as the ran-
dom perturbation term of Eq1), we can argue the scaling

relation of the length of synchronization in nearly synchro-
nous regime of these two-coupled oscillators are effectively

similar to that of type-l intermittency with noisgEq. (2)]
[note: the dispersion d&(¢4,¢,) hardly depends om for

€< e<e]. Thus, we observe that the scaling of the laminar

length is separated into two regions in the centee®fe, .
So it has(l)~exp{|¢—€>? for e>¢ and(l)=|e— el 2
for e<e;, like the previously presented resutsote: based
on numerical studies, Refl10] proposed the scalingl)
~exp{—|e;— €% for e> (e, =0.0286),.

As in the above analysis, the persistency of the intermit
tency is caused by the random perturbatiéft) in the

closed-channel region. Thus it can be argued that the nop

trivial 2 m-phase jumps observed in R¢10] originate from
the random perturbation ter@(¢,,¢»), neglected in the
discussion of Ref[10], rather than from the ternd,/A;
+A,/A,. We perform the numerical simulation for the scal-
ing of the laminar length in both regiong€ e, ande>¢,),

and the results are presented in Fig. 4. As we expected, thg
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FIG. 4. The laminar scaling in the two coupled $3ter oscilla-
tors for (a) e>¢, and(b) e<e;.

proaches zero. The scaling relation is eventually saturated by
(IY~exp{(1/D)|€|*? [Eq. (7) and Figs. 8a) and 3b)] after

he tangent bifurcationg<<0). Such dramatic deformation

of the scaling relation stems from the persistency of the in-
termittency with the random perturbation even though the
system is in a state of closed-channel regioe., €<0).

This is why the laminar length in closed-channel region
grows faster than that of the positive drie2,13. From these
sults, we can also explain why two coupledsBler oscil-

figures well agree with the previous theoretical analysis Ofators exhibit deformation of the scaling relation of the syn-

the scaling relation.

V. SUMMARY AND DISCUSSIONS

In conclusion, the anomalous scaling relation of type-I

chronous length in the nearly synchronous regji@.
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